Telegram Group & Telegram Channel
Мы знаем первые 4 истинно случайных числа.
И с натяжкой пятое.
Также мы знаем верна ли гипотеза Гольдбаха.


Но всё это лишь потенциально...

Так, ну нам известно что существует построенная машина Тьюринга, останавливающаяся (переходящая в состояние hlt) если гипотеза Гольдбаха неверна¹. Соответственно, машина должна зацикливаться если гипотеза верна. Стоило бы узнать число шагов, после которого мы сможем точно сказать, остановилась машина, или зациклилась. Как вычислить такое число шагов? Возьмём другую машину Тьюринга, с тем же числом состояний и запустим её на ленте, содержащей только нули. Узнав максимальное число единиц, которое эта машина может написать на ленту и остановится, а не зациклится, мы соответственно сможем и узнать когда машина Тьюринга докажет гипотезу Гольдбаха.

В чём проблема?

Проблема в том, что мы знаем максимально возможное число печатаемых единиц от 0 состояний — это 1. Для 1 — 4, для 2 — 6, для 3 — 13. Для 4х — это возможно 4098, а для 5 состояний это число точно больше 10¹⁸²⁶⁷. Видно, что это число растёт быстрее любой вычислимой функции. Это число можем обозначить как BB(n), где BB— beasy beaver, a n — число состояний машины. BB(a), где а ≥ 5 по определению имеет бесконечную Колмогоровскую сложность, и соответственно эти числа можно назвать истинно случайными!

¹см предыдущий пост и картинку

#выдернуто #нЛВ



tg-me.com/logic_sip/204
Create:
Last Update:

Мы знаем первые 4 истинно случайных числа.
И с натяжкой пятое.
Также мы знаем верна ли гипотеза Гольдбаха.


Но всё это лишь потенциально...

Так, ну нам известно что существует построенная машина Тьюринга, останавливающаяся (переходящая в состояние hlt) если гипотеза Гольдбаха неверна¹. Соответственно, машина должна зацикливаться если гипотеза верна. Стоило бы узнать число шагов, после которого мы сможем точно сказать, остановилась машина, или зациклилась. Как вычислить такое число шагов? Возьмём другую машину Тьюринга, с тем же числом состояний и запустим её на ленте, содержащей только нули. Узнав максимальное число единиц, которое эта машина может написать на ленту и остановится, а не зациклится, мы соответственно сможем и узнать когда машина Тьюринга докажет гипотезу Гольдбаха.

В чём проблема?

Проблема в том, что мы знаем максимально возможное число печатаемых единиц от 0 состояний — это 1. Для 1 — 4, для 2 — 6, для 3 — 13. Для 4х — это возможно 4098, а для 5 состояний это число точно больше 10¹⁸²⁶⁷. Видно, что это число растёт быстрее любой вычислимой функции. Это число можем обозначить как BB(n), где BB— beasy beaver, a n — число состояний машины. BB(a), где а ≥ 5 по определению имеет бесконечную Колмогоровскую сложность, и соответственно эти числа можно назвать истинно случайными!

¹см предыдущий пост и картинку

#выдернуто #нЛВ

BY Финиковый накатайка


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/logic_sip/204

View MORE
Open in Telegram


LOGIC_SIP Telegram Group Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

LOGIC_SIP Telegram Group from vn


Telegram Финиковый накатайка
FROM USA